skip to main content


Search for: All records

Creators/Authors contains: "Applestein, Cara"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Auge, Gabriela (Ed.)
    Abstract Plant-population recovery across large disturbance areas is often seed-limited. An understanding of seed dispersal patterns is fundamental for determining natural-regeneration potential. However, forecasting seed dispersal rates across heterogeneous landscapes remains a challenge. Our objectives were to determine (i) the landscape patterning of post-disturbance seed dispersal, and underlying sources of variation and the scale at which they operate, and (ii) how the natural seed dispersal patterns relate to a seed augmentation strategy. Vertical seed trapping experiments were replicated across 2 years and five burned and/or managed landscapes in sagebrush steppe. Multi-scale sampling and hierarchical Bayesian models were used to determine the scale of spatial variation in seed dispersal. We then integrated an empirical and mechanistic dispersal kernel for wind-dispersed species to project rates of seed dispersal and compared natural seed arrival to typical post-fire aerial seeding rates. Seeds were captured across the range of tested dispersal distances, up to a maximum distance of 26 m from seed-source plants, although dispersal to the furthest traps was variable. Seed dispersal was better explained by transect heterogeneity than by patch or site heterogeneity (transects were nested within patch within site). The number of seeds captured varied from a modelled mean of ~13 m−2 adjacent to patches of seed-producing plants, to nearly none at 10 m from patches, standardized over a 49-day period. Maximum seed dispersal distances on average were estimated to be 16 m according to a novel modelling approach using a ‘latent’ variable for dispersal distance based on seed trapping heights. Surprisingly, statistical representation of wind did not improve model fit and seed rain was not related to the large variation in total available seed of adjacent patches. The models predicted severe seed limitations were likely on typical burned areas, especially compared to the mean 95–250 seeds per m2 that previous literature suggested were required to generate sagebrush recovery. More broadly, our Bayesian data fusion approach could be applied to other cases that require quantitative estimates of long-distance seed dispersal across heterogeneous landscapes. 
    more » « less
  2. Abstract

    Interannual variation, especially weather, is an often‐cited reason for restoration “failures”; yet its importance is difficult to experimentally isolate across broad spatiotemporal extents, due to correlations between weather and site characteristics. We examined post‐fire treatments within sagebrush‐steppe ecosystems to ask: (1) Is weather following seeding efforts a primary reason why restoration outcomes depart from predictions? and (2) Does the management‐relevance of weather differ across space and with time since treatment? Our analysis quantified range‐wide patterns of sagebrush (Artemisiaspp.) recovery, by integrating long‐term records of restoration and annual vegetation cover estimates from satellite imagery following thousands of post‐fire seeding treatments from 1984 to 2005. Across the Great Basin, sagebrush growth increased in wetter, cooler springs; however, the importance of spring weather varied with sites' long‐term climates, suggesting differing ecophysiological limitations across sagebrush's range. Incorporation of spring weather, including from the “planting year,” improved predictions of sagebrush recovery, but these advances were small compared to contributions of time‐invariant site characteristics. Given extreme weather conditions threatening this ecosystem, explicit consideration of weather could improve the allocation of management resources, such as by identifying areas requiring repeated treatments; but improved forecasts of shifting mean conditions with climate change may more significantly aid the prediction of sagebrush recovery.

     
    more » « less
  3. There is an urgent need for near‐term predictions of ecological restoration outcomes despite imperfect knowledge of ecosystems. Restoration outcomes are always uncertain but integrating Bayesian modeling into the process of adaptive management allows researchers and practitioners to explicitly incorporate prior knowledge of ecosystems into future predictions. Although barriers exist, employing qualitative expert knowledge and previous case studies can help narrow the range of uncertainty in forecasts. Software and processes that allow for repeatable methodologies can help bridge the existing gap between theory and application of Bayesian methods in adaptive management.

     
    more » « less
  4. Whole‐genome sequencing is revolutionizing our understanding of organismal biology, including adaptations likely to influence demographic performance in different environments. Excitement over the potential of genomics to inform population dynamics has prompted multiple conservation applications, including genomics‐based decision‐making for translocation efforts. Despite interest in applying genomics to improve translocations, there is a critical research gap: we lack an understanding of how genomic differences translate into population dynamics in the real world. We review how genomics and genetics data could be used to inform organismal performance, including examples of how adaptive and neutral loci have been quantified in a translocation context, and future applications. Next, we discuss three main drivers of population dynamics: demographic structure, spatial barriers to movement, and introgression, and their consequences for translocations informed by genomic data. Finally, we provide a practical guide to different types of models, including size‐structured and spatial models, that could be modified to include genomics data. We then propose a framework to improve translocation success by repeatedly developing, selecting, and validating forecasting models. By integrating lab‐based and field‐collected data with model‐driven research, our iterative framework could address long‐standing challenges in restoration ecology, such as when selecting locally adapted genotypes will aid translocation of plants and animals.

     
    more » « less